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ABSTRACT

Phenotypic correlations, such as those between functionally distinct behavioral traits, can emerge
through the action of selection on individual traits, on trait combinations, and through pleiotropic mech-
anisms. Steroid hormones are known to have pleiotropic effects on a suite of behavioral and physiological
traits, including stable individual differences in coping with stress. Characterizing the stress axis in rela-
tion to personality, however, has typically focused on estimating baseline and peak levels of glucocorti-
coids, principally in captive animals. In contrast, the reactivity of the stress response—how quickly it
turns on and persists—may better indicate the ability of an individual to cope with challenges, particu-
larly in free-living animals. Using wild great tits (Parus major) we tested the hypothesis that cautious
individuals respond to a standardized stressor with a more reactive stress response compared to bolder
individuals. Wild birds were captured and tested for exploration behavior in a novel environment—an
operational measure of personality in this species—and assessed separately for their glucocorticoid
response to a standardized stressor. Slower explorers exhibited a greater elevation in glucocorticoid lev-
els within the first three minutes after capture. Further, slower explorers reached a higher maximum
CORT concentration and had higher total exposure to glucocorticoids during the stressor period. These
data provide evidence that the temporal reactivity of the endocrine stress response, specifically its speed

and magnitude, is associated with stable behavioral traits in free-living animals.

© 2013 Published by Elsevier Inc.

1. Introduction

Individual animals exhibit behavioral differences that are stable
over time and across contexts (Gosling, 2001; Réale et al., 2007).
Such behavioral differences are referred to as coping styles or per-
sonality, and have been shown to have a genetic (van Oers et al.,
2005) and developmental basis (Stamps and Groothuis, 2010),
and be under sexual (Schuett et al.,, 2010) and natural selection
(Dingemanse et al., 2004; Quinn et al., 2009; Smith and Blumstein,
2008). The idea that hormones serve a key role in promoting such
differences is a sustained hypothesis in animal behavior research
(Williams, 2008). Stress hormones in particular are thought to be
involved in one of the major axes of personality variation: the
shy-bold continuum (Carere et al., 2010; Korte et al., 2005; @verli
et al., 2007).
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The endocrine stress response is coordinated by the hypotha-
lamic-pituitary-adrenal (HPA) axis. The HPA axis releases gluco-
corticoid hormones and one of the critical functions of this
system is to cope with the demands of normal life, for example
day-night rhythmicity, locomotor activity and metabolism (Landys
et al., 2006). Moreover, the HPA axis is essential for coping with
unpredictable, ‘stressful’ events, such as exposure to unfamiliar
environments (Lendvai et al., 2011), inclement weather (Breuner
and Hahn, 2003), or predators (Cockrem and Silverin, 2002; Eilam
et al., 1999). The stress response consists of several components:
First, the response is initiated within a few minutes after a stimu-
lus (stressor, e.g., capture) is perceived, as glucocorticoids (and
their upstream secretagogues) are secreted above baseline concen-
trations. Second, levels of glucocorticoids continue to increase in
the blood until they reach a peak concentration, typically within
30-60 min. Third, a process of negative feedback reduces circulat-
ing glucocorticoid levels, allowing baseline levels to be re-
achieved, thus enabling the animal to respond to future challenges.
The main glucocorticoid in birds is corticosterone (CORT), and like
many steroid hormones CORT can affect diverse regulatory and
behavioral processes simultaneously. For example, elevated CORT
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stimulates locomotor activity and foraging when food reserves are
low, but can also suppress non-essential and energetically
demanding processes such as immune defense, reproductive phys-
iology and behavior (Sapolsky et al., 2000).

Because a single hormone such as CORT can generate co-varia-
tion at multiple physiological levels (c.f., hormonal pleiotropy;
(Ketterson and Nolan, 1999), and because the HPA axis can influ-
ence behavior directly, the pleiotropic effects of CORT might con-
tribute to behavioral co-variation (Baugh et al., 2012; Korte et al.,
2005; @verli et al., 2005). In fact, several of the canonical behav-
ioral traits that characterize personality (e.g., shyness in animals,
neuroticism in humans; (Gosling, 2001) may relate to differences
in how individuals respond hormonally to stressors (Koolhaas
et al., 2007; Martins et al., 2007). Furthermore, there is often
remarkable intra-population variation in concentrations of base-
line and stress-induced CORT (Pottinger et al., 1992; Tort et al.,
2001). Importantly, a portion of this variance has been shown to
be repeatable among individual birds (Evans et al., 2006; Pottinger
and Moran, 1994; Rensel and Schoech, 2011; Romero and Reed,
2008) and to have a heritable component (Brown and Nestor,
1973; Edens and Siegel, 1975; Evans et al., 2006; Satterlee and
Johnson, 1988). On the basis of these established hormone-behav-
ior relationships, glucocorticoid physiology has been hypothesized
to underlie animal personality (Korte et al., 2005). Specifically, the
HPA axis of shyer individuals is predicted to exhibit greater reac-
tivity (Ellis et al., 2006). Operationally, ‘reactivity’ of the HPA axis
has been used to refer to the magnitude of the stress response,
including both the area under the curve (Juster et al., 2012) and
the maximum concentration of stress hormones observed during
a stress assessment (Wada et al., 2007)—definitions that deempha-
size the temporal dimension. Nonetheless, studies probing the
relationship between individual differences in behavior and stress
physiology have yielded support for this first prediction (Baugh
et al., 2012; Cockrem, 2007; Koolhaas et al., 1999; Lendvai et al.,
2011; Mackenzie et al., 2009; @verli et al., 2005). And while much
can be gleaned from such studies, many have explored this ques-
tion using captive or domesticated animals, which might differ in
fundamental ways from wild organisms, particularly in their stress
physiology (Calisi and Bentley, 2009; Dickens and Romero, 2009).

In this study we extended this line of investigation to test the
idea that variation in stress reactivity—including both its onset
and magnitude—is associated with behavioral differences in wild
birds. Specifically, variation in the initiation phase of the glucocor-
ticoid response might play a role in acute coping behavior, while its
magnitude might have longer term consequences, including how
effectively an individual can endure a subsequent stressor and
which individuals survive stressful natural events (Romero and
Wikelski, 2010).

We used wild great tits (Parus major), tested in a standardized
way for both exploration behavior and stress responses. Great tits
have become a model vertebrate for the study of animal personal-
ity, in part because this species has been studied from an ecologi-
cally informed perspective. Previous research in this species has
shown that exploration behavior in a novel environment (open
field test; Verbeek et al., 1996) is a repeatable behavioral trait over
long periods of time (Dingemanse et al., 2002), is correlated with
mate choice (van Oers et al., 2008), aggression (van Oers et al.,
2004; Verbeek et al., 1996), territorial behavior (Amy et al.,
2010), learning (Titulaer et al., 2012), reproductive success (Both
et al., 2005; Quinn et al., 2009), and survival (Dingemanse et al.,
2004). We thus used exploration behavior as an operational mea-
sure of great tit personality. Further, heritability studies of wild
(Dingemanse et al., 2002; Quinn et al., 2009) and captive great tits
(Drent et al., 2003; van Oers et al., 2004) have demonstrated a high
degree of heritability in exploration behavior, and a genetic corre-
lation between exploration behavior and stress physiology (Baugh

et al.,, 2012; Carere et al., 2003). In the present study we tested the
hypothesis that slower explorers exhibit a more reactive (earlier
elevation and greater magnitude) endocrine stress response.

2. Materials and methods
2.1. Study system

The Westerheide study area near Arnhem, The Netherlands (52°
0’ 38" N, 5° 50’ 30" E) is a forest of approximately 100 ha and hosts
a large long-term study population of color-ringed personality-
typed wild great tits. Since personality has been shown to be a trait
that is consistent over time, we did not retest individuals of known
personality, but conducted new tests upon first capture of un-
ringed individuals. We carried out behavioral testing and hormone
sampling on separate dates to avoid the potential confounding ef-
fects that the bleeding experience might have on performance in
the behavior assay, and vice versa. Because we could not target
the collection of specific individuals, we instead sampled birds
opportunistically for hormones and behavior, resulting in a median
interval between behavioral testing and hormone sampling of
28 days (mean + SD: 145 + 300 d). Our exploration assay has been
shown to estimate persistent characteristics of an individual (Care-
re et al., 2005; Dingemanse et al., 2002), indicating that the scores
have a high explanatory power across prolonged periods of time.

2.2. Behavioral testing

Birds were caught with mist nets near feeding stations in
Westerheide and transported for approximately 0.5 h in transport
boxes to a custom designed housing and behavioural testing facil-
ity (Heteren, The Netherlands) where they were kept overnight in
individual cages (0.9 x 0.5 x 0.4 m) in a room that shares a com-
mon wall with the test chamber. Exploration behavior was mea-
sured separately for each individual following a standardized
protocol using a test chamber (2.0 x 4.0 m, 2.5 m high) with five
artificial ‘trees’ as a novel environment (for details see Dingemanse
et al., 2002). On the morning following capture (0800-1200) each
bird was released individually from its cage directly into the test
chamber without handling, by opening a sliding door on the cham-
ber side of the common wall. After entry into the chamber, we
monitored behavior for 2 min and recorded the number of tree vis-
its and hops and flights between and within perches (e.g., branches
of the artificial trees, sliding doors, floor). We calculated the explo-
ration scores by summing all hops and flights per individual.
Exploration scores are known to vary seasonally (increasing as
the breeding season approaches) but remain repeatable at the indi-
vidual level (Dingemanse et al., 2002). We therefore corrected for
‘July date’, which is the number of days from 1 July onward (explo-
ration scores from the sample (n=86): mean=23.09, SD =9.46,
range = 5.7-49.9). All individuals in this study were tested for the
first time during their lives, thus precluding any effects of habitu-
ation to the testing conditions (Dingemanse et al., 2002). Behav-
ioral testing was conducted blindly and independently of
hormone sampling and measurement. Birds were released at their
site of capture within a few hours following behavioral testing.

2.3. Hormone sampling

In the autumn of 2010 we captured birds for the measurement
of plasma CORT using a standardized handling-restraint protocol
to examine initial and stress-induced concentrations (Romero
et al.,, 1997). By sampling plasma CORT during the non-breeding
season, when hormone levels fluctuate less (Romero and Wing-
field, 1998), and by sampling during a restricted time of day
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(0800-1200), we aimed to minimize variation in hormone concen-
trations resulting from seasonal and diel fluctuations (Astheimer
et al,, 1994; Breuner et al., 1999; Romero, 2002). We captured birds
by erecting mist nets adjacent to feeding stations at five locations.
We observed mist nets from a distance of ca. 20 m behind vegeta-
tion and initiated a digital timer the instant a bird intercepted the
net.

We collected approximately 40 pL of blood at each sampling
time point by puncturing the brachial vein using a 30-gauge nee-
dle. The first blood sample is referred to as initial CORT (‘CORTO0’)
and was collected in less than 3 min following entry into the
net—this duration of elapsed time is referred to as ‘handling time’.
Most passerine species exhibit a detectable increase in plasma
CORT approximately 3 min after the onset of an acute stressor
(Romero and Reed, 2005; Romero and Romero, 2002). After the ini-
tial bleed, birds were held in cloth bags until 30 min after capture,
when they were re-bled (‘CORT30’). From these 86 birds we ran-
domly sampled a subset (n=16) at one additional time point:
90 min after capture (‘CORT90’). This second stress-induced time
point provided us with an opportunity to examine the relationship
between behavioral scores and the total (area under the curve) and
maximum CORT exposure (highest value reached for each bird)
during the stressor.

Following the final bleed for each bird we measured tarsus
length (Ecotone mechanical callipers, £0.1 mm), body mass (30 g
Pesola scale, +0.3%), and furcular fat score (0-5; Cherry, 1982).
Although most birds had completed a pre-basic molt, a minority
of birds were in the final stages and therefore we also included
molt score. Lastly, we recorded the air temperature at capture
(Royal Netherlands Meteorological Institute, Deelen Station) and
ring number. We fitted unringed birds with a uniquely numbered
aluminium ring (Vogeltrek Station, NIOO). Birds were then imme-
diately released at the site of capture.

Blood samples were kept on wet ice for less than 3 h before
being centrifuged (5000 rpm for 10 min; ca. 1400 g). The plasma
fraction was stored at —80 °C until November 2010 when samples
were transferred on dry ice to the Max Planck Institute for Orni-
thology (Radolfzell, Germany) for hormone measurement.

2.4. Enzyme immunoassay for corticosterone

Plasma CORT concentrations were measured using standard en-
zyme immunoassay techniques (Enzo Life Sciences, Cat. No. ADI
900-097). Details on the validation (parallelism and precision) of
our EIA protocol have been reported elsewhere (Ouyang et al.,
2011). Briefly, concentrations were determined following a
diethyl-ether extraction of a 5-10 pL sample volume. After drying
extracts under a stream of N, gas, samples were diluted at a 1:30
dilution using Tris-buffered saline (supplied by kit) and samples
were allowed to equilibrate overnight at 4 °C. Samples were then
assayed in duplicate along with blanks and five standards
(0.032-20 ng mL~! CORT), and values were corrected for average
recovery loss, which we determined previously using individual
samples spiked with radioactively labelled CORT (mean + SD; ca.
85% +2.7). The intra- and inter-assay coefficients of variation
(CV)—9.03% and 9.51%, respectively—were determined by includ-
ing a minimum of two duplicate samples of stripped chicken plas-
ma spiked with commercial corticosterone (supplied by kit) at a
concentration of 20 ng mL™! on each of the nineteen plates. All
samples were processed during a two-week period and any sample
exceeding a 15% coefficient of variation between duplicates was re-
analyzed until CV values met this criterion. The assay has a detec-
tion limit of 27 pg mL™". The cross-reactivity of the antiserum is
100% for corticosterone, 28.6% for deoxycorticosterone, and 1.7%
for progesterone.

2.5. Statistics

Following log,o transformation of CORT values, the residuals
from the general linear model were tested for normality by visual
inspection of Q-Q plots and Kolmogorov-Smirnov tests, and
homogeneity of variances were examined with Levene’s test. The
assumptions of all test statistics were met after we excluded four
extreme outlying CORTO samples (>3 SD above mean), along with
their associated CORT30 samples. These four CORTO samples ex-
ceeded the average CORT30 concentrations and therefore likely
represent animals that had been stressed prior to capture. Using
t-tests we tested the assumption that our subset of birds sampled
at three time points was a representative subsample of our larger
two time point dataset for both exploration scores and CORT
values.

We examined the relationship between CORT concentrations
and exploration scores using general linear models. In addition to
exploration scores, we included a set of variables that have been
shown previously to modulate the HPA axis in wild birds: air tem-
perature at capture (Romero et al., 2000), molt score (Cornelius
et al,, 2011; Romero et al., 2005), handling time (Heidinger et al.,
2006; Romero and Reed, 2005), fat score and body condition
(Romero et al.,, 2000). We estimated body condition using the
Scaled Mass Index (SMI) (Peig and Green, 2009). The SMI improves
on previous methods of calculating body condition from mass/
length data (e.g., residuals from an ordinary least squares regres-
sion) by incorporating an allometric scaling principle. To calculate
SMI, a regression between InTarus and InMass was made to calcu-
late the value of the exponent in the SMI calculation. To maximize
the accuracy of our formula, we used a linear regression based on a
larger sample of birds captured concurrently with this study and
measured for mass and tarsus (n = 188), and not just the subsam-
ple of birds for which we had both hormone and behavior data
(n=286).

For the CORTO model, we included the interaction between han-
dling time and exploration score in order to test the hypothesis
that individual differences in exploration score are reflected in
the early elevation of CORT levels. We included capture order
(whether behavioral testing or hormone sampling came first or
second) and intercapture interval (number of days between behav-
ior and hormone sampling) as a factor and covariate, respectively.
For the sixteen birds with three time points we calculated the area
under the curve (‘total integrated CORT’) using Prism 4.0 (Graph-
Pad, La Jolla, USA). In our general linear models we used a back-
wards elimination process and excluded variables with a p > 0.2.
To avoid over-parameterization in this sample and to corroborate
the results from the GLMs we performed partial correlations con-
trolling only for SMI and molt score. Lastly we calculated the differ-
ence between CORT concentrations at 30 min and 90 min to
investigate recovery magnitude. We used SPSS (version 16.0, SPSS
Inc., Chicago, IL, USA) for all statistical analyses.

3. Results

We found no effect of testing order (behavioral testing versus
stress series; all p > 0.4), testing interval (days separating behavior
and stress series characterizations; all p > 0.2), or air temperature
at capture (all p > 0.4) as either main effects or interaction effects
with exploration behavior, and therefore these variables were not
included in our final models. The subset of birds sampled at three
time points (0, 30, 90 min) did not differ from those birds sampled
at only two time points (0, 30 min) in exploration scores
(mean % SD, all two-tailed: two time points: 22.1 £9.2; three time
points: 26.2 £9.6; tgo=1.6, p=0.12), CORTO concentrations (two
time points: 45+32ngmlL; three  time  points:



Table 1

Effects of independent variables on log;, transformed concentrations of corticosterone (ng mL~?) at initial (CORTO) and stress-induced time points (CORT30, CORT90), and the area under the curve (total CORT). (Independent variables
with p < 0.2 were included in the final analyses and significant effects are indicated in bold; b, unstandardized regression coefficients from an analysis of untransformed CORT (ng mL™'); partial eta squared values are presented as

estimates of effect size. Significant testing was conducted on log;, transformed data.).
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52+22ngmL}; tgo=1.4, p=0.17) or CORT30 (two time points:
20.0+13.7ngmL"'; three time points: 18.7+9.9ngmL};
tgo = 0.15, p = 0.88), indicating that this subset of birds is represen-
tative of our larger dataset. We found significant effects of molt
status and fat score in the CORTO and total integrated CORT models
(Table 1). Prebasic molt score was associated with lower CORTO
values (Table 1); birds that had completed molt (n=67) tended
to have lower CORTO values compared to birds that were nearly
complete (n = 15). Excluding molt status did not change the statis-
tical significance of the analyses. Finally, higher fat scores were
associated with lower total integrated CORT values (Table 1).

3.1. Initial CORT

There was a significant main effect of handling time on initial
CORT concentrations (Table 1). On average, individuals sampled
closer to the 3 min mark had higher CORTO values compared to
those sampled more quickly (e.g., <2 min). As predicted there
was a significant interaction between handling time and explora-
tion scores on the CORTO levels, and the direction of the effect indi-
cated that slower explorers experienced a more positive elevation
in initial CORT concentrations during the first 3 min after capture
compared to faster explorers (GLM: exploration score x handling
time: F; 73 = 8.59, p = 0.005, n = 82; Table 1). In Fig. 1a we illustrate
this interaction by dividing our sample of birds into three groups
with respect to exploration scores (fastest quartile (n = 21), slowest
quartile (n =21), intermediate quartiles (n = 40). This is for graph-
ical purposes only—exploration scores are a continuous variable
and were included as such in the model above. This interaction
did not occur because it took longer to obtain a blood sample in
slower explorers, as we found no correlation between handling
time and exploration score (r*<0.001, F;go=0.003, p=0.958,
n=82; Fig. 1b). Likewise, from a related study involving repeated
captures and bleeds, we found no evidence that handling time or
the volume of blood collected was related to bird identity (Baugh,
unpublished). Further, the main effect of exploration score in the
CORTO model did not remain significant when the interaction term
with handling time in the model is removed (F; 74 = 1.47, p=0.23;
see also Fig. 1a inset), indicating that it is the interaction between
exploration scores and handling time that explains variation in the
CORTO concentrations, and not differences in true ‘baseline’ con-
centrations. Likewise, there is no main effect of exploration score
when CORTO values are ‘corrected’ for handling time (i.e., using
predicted values from the regression of handling time on
CORTO0)—again suggesting no bias in the distribution of handling
times across personalities. Handling time remains significant with
or without the interaction term in the model (all p < 0.001).

3.2. Stress-induced CORT

Our standardized capture-restraint stress protocol resulted in
an increase in CORT levels between the initial and 30 min time
points (paired t-test, two-tailed: tg; = 18.16, p < 0.001; Fig. 2). We
found no evidence for a relationship between stress-induced CORT
concentrations at 30 min and exploration scores or the other
covariates (Table 1). Concentrations of CORT at 90 min were highly
variable among birds but were on average equal or higher com-
pared to the 30-min time point (paired t-test, two-tailed:
t15 =2.08, p = 0.06). The majority of birds (11 of 16) reached their
maximum CORT value at the 90 min time point and slower explor-
ers had higher CORT concentrations at this time point (GLM:
F19=8.92, p=0.015 n=16; partial correlation: r=-0.572,
p=0.032, n=16; Table 1, Fig. 3). Likewise, slower explorers
reached higher maximum CORT concentrations (GLM: F; g =8.19,
p=0.019, n=16; partial correlation: r=-0.562, p=0.037, n=16;
Supplementary Fig. 1). Lastly, slower explorers experienced
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Fig. 1.. (a) Depiction of the interaction between handling time (duration of time elapsed between when each bird intercepted the mist net and the completion of blood
collection) and exploration score on initial corticosterone levels. In order to illustrate the interaction between exploration score (a continuous variable) and handling time on
CORTO concentrations, birds are divided into three groups: (i) fastest quartile (n = 21); (ii) intermediate quartiles (n = 40); and (iii) slowest quartile (n = 21). Plotted values are
raw initial concentrations (n = 82). Fitted lines were calculated from the general linear model for each group. Inset depicts average CORTO concentrations for each group. (b)

Handling time and exploration score were uncorrelated.
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concentration

(ng mL™") 20

0-3 30 90
time point (min)

Fig. 2.. Mean (+SEM) raw corticosterone concentrations at capture (n = 82), 30 min
(n=282)and 90 min (n = 16) post-capture. Grey lines represent the individual curves
for the sixteen birds with three time points, whose values are also incorporated into
estimates of the mean and SEM

significantly higher total integrated CORT during the stressor per-
iod (GLM: F,9=12.03, p=0.007, n=16; partial correlation:

=-0.592, p=0.026, n = 16; Supplementary Fig. 2). We found no
relationship between exploration score and the change in CORT
concentrations between 30 and 90 min (F;9=0.06, p=0.75,
n = 16; partial correlation: r= —0.082, p =0.78, n = 16).

4. Discussion

Our data on free-living great tits support the hypothesis that
exploration behavior as an operational measure of avian personal-
ity is related to stress reactivity. This was demonstrated in two
ways. First, CORT levels increased significantly during the first
few minutes after stressor onset in slower compared to faster
explorers—that is, the immediate reaction to a stressor appears
to be more rapid in these individuals (c.f. Schoech et al., 1999). Sec-
ondly, slower explorers had higher total integrated CORT (area un-
der the curve) and reached higher maximum CORT concentrations
during the stressor period, two conventional measures of stress
reactivity (Juster et al., 2012; Wada et al., 2007). Importantly,
exploration score does not merely have a statistically significant ef-
fect—it also has considerable explanatory value: approximately
half of the variance in these estimates of stress reactivity is ex-
plained by this behavioral measure (see Table 1). Together, these
measures of immediate and late stress reactivity indicate that
slower individuals have a more potentiated stress response.

4.1. Initial HPA axis reactivity and exploration

We found a significant effect of handling time on CORTO despite
the fact that every sample was collected in less than 3 min from
capture. Increases in CORT within 3 min have been reported for a
few bird species (Heidinger et al., 2006; Romero and Reed, 2005).
However, variation among individuals in the elevation of the CORT
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Fig. 3.. Correlation between exploration score and raw corticosterone levels at 90 min (n = 16). Fitted line was calculated from the general linear model.

response during the first few minutes after stressor onset and a
relationship to functional traits like exploration behavior has to
our knowledge not been reported. For the slowest explorers, the
endocrine stress response began in less than 3 min, whereas the
fastest explorers exhibited no detectable increase by 3 min. If
‘reactivity’ of the HPA axis is defined as the area under the curve
(Juster et al., 2012) or the maximum concentration of stress hor-
mones reached following a stressor (Wada et al., 2007), our results
are consistent with the idea that behaviorally cautious individuals
have a more reactive stress axis, as has been shown in some
domesticated species (Erhard et al., 1999; Korte et al., 1992; Korte
et al,, 1997). This is the first study to our knowledge, however, that
extends this observation to include the initial temporal reactivity
of the HPA axis—i.e., the speed of the HPA axis response to a stres-
sor. Methodologically, this result implies that the standard applica-
tion of the “3 min rule” might result in an upwardly biased (i.e.,
stress-contaminated) estimate of ‘baseline’ CORT in more reactive
individuals (see Romero and Reed, 2005 for a discussion of this to-
pic as it applies interspecifically). While examining the repeatabil-
ity of this CORT onset time was beyond the scope of the current
study, future research could test this by rapidly sampling individ-
uals (e.g., <1 min) and then re-sampling at early fixed intervals
(e.g., 2-3 min, 4-5 min). Although challenging to conduct under
field conditions, such a study would permit direct inferences about
the timing of CORT secretion onset and sources of variation
therein.

Mechanistically, variation in the onset of elevated plasma CORT
could be due to variation in one or more components of the HPA
axis (Williams, 2008). There are several non-mutually exclusive
possibilities: (1) Slower birds might perceive stressors more
quickly or more intensely due to greater perceptual (sensory) sen-
sitivity to their environment—an interpretation consistent with the
idea that shyer individuals are generally more sensitive to external
stimuli (Ellis et al., 2006). However, given the intensity and abrupt-
ness of the stressor used in the current study (capture and han-
dling), this seems an implausible explanation. (2) Slower birds
might have a greater number of corticotropin-releasing hormone
(CRH) producing cells in the hypothalamus or greater CRH synthe-
sis, resulting in a more robust secretion of CRH to the pituitary and
a concomitantly rapid elevation in hormones at subsequent stages
of the HPA axis cascade. This could be tested by measuring CRH
concentrations in the hypophyseal portal following a standardized
stressor, the CRH content and the number of CRH positive neurons
in the paraventricular nucleus. (3) Variation in the precursor or en-
zyme content, cell number and receptor number for components of
the HPA axis in the anterior pituitary and adrenal cortex could be
contributing to differences in reactivity. Variation in CRH sensitiv-

ity was shown, for example, in Japanese quail bidirectionally se-
lected for fearfulness, whereas lines did not differ in sensitivity
to either adrenocorticotropic hormone (ACTH) or arginine vasoto-
cin (AVT) Hazard et al., 2007. (4) Variation in more rapidly acting
signalling systems (e.g., monoamine neurotransmitters such as
serotonin, dopamine and norepinephrine) could be correlated with
variation in HPA axis reactivity, as has been shown in rainbow
trout (Oncorhynchus mykiss) (@verli et al., 2005).

4.2. Stress response magnitude and exploration

There was no relationship between exploration behavior and
CORT30 values—a common sampling time point in stress studies.
This result is consistent with a previous study of wild-origin great
tits, which also found no relationship between personality and
plasma CORT at 30 min following capture, handling and restraint
(Baugh et al., 2012). At the 90 min time point, however, slower
explorers exhibited higher CORT levels—the time point that largely
captured the maximum CORT values in this stress series. As a re-
sult of high concentrations at this late time point, slower birds
experienced more total CORT exposure during the stressor. This re-
sult might explain why a previous study that examined faecal
CORT metabolites, which presumably reflect levels of CORT inte-
grated over periods of minutes to hours, found elevated CORT val-
ues in slower explorers after exposure to a social stressor (Carere
et al., 2003). Total glucocorticoid exposure has been shown previ-
ously to be related to fitness-relevant measures such as stress-re-
lated disease (McEwen, 1991; OIff et al., 1993) and cellular aging
(Haussmann et al., 2011). If the longer duration of the stress re-
sponse in slower birds is due to weaker negative feedback (Dall-
man et al., 1992; Romero, 2004), this might be due to a lower
number of glucocorticoid receptors in the brain (Dickens et al.,
2009). Consistent with this idea, threespine sticklebacks (Gasteros-
teus aculeatus) with a bolder and more aggressive personality
exhibited elevated glucocorticoid receptor (GR1 and GR2) levels
in whole brain homogenates (Aubin-Horth et al., 2012). We stress
that negative feedback strength was not tested directly in the pres-
ent study but could be examined in future research by injecting a
standardized dose of a synthetic glucocorticoid (e.g., Dexametha-
sone) and measuring how quickly levels of CORT decline, in addi-
tion to determining the distribution and density of glucocorticoid
receptors and their binding capacity in the brain. We caution, how-
ever, that our study, like many others using a capture-handling-re-
straint protocol, examined CORT levels following a intense,
enduring stressor, which likely does not reflect certain aspects of
natural stressors which are often shorter lived. Our finding of
covariation between consistent behavioral differences and
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immediate stress reactivity further supports the idea that future
studies along these lines should explore stress responses to more
transient and naturalistic stressors.

4.3. HPA axis-behavior relationships

The observed relationship between individual differences in
behavior and the onset of this physiological response presents
the possibility that glucocorticoid physiology plays a direct role
in shaping the behavioral coping styles that animals use to respond
to challenges. For example, differences in locomotor activity may
contribute to variation in exploration behavior during personality
testing, which in turn might be a product of heritable differences
in HPA axis physiology (Breuner et al., 1998). We think this is an
unlikely possibility because (1) the brief testing period used in
the present study would favor the contribution of more rapidly act-
ing systems such as catecholamines, which are known to have
behaviorally relevant actions (Cannon, 1929); and (2) exploration
behavior in hand-reared great tits is unrelated to locomotor activ-
ity in home cages (Verbeek et al., 1994).

An alternative, which is not mutually exclusive, is that differen-
tial programming of HPA axis reactivity during development (i.e.,
organizational effects) might underlie personality even in the ab-
sence of a causal role for hormone concentrations during behav-
ioral expression (i.e., activational effects). Factors that influence
the trajectory of personality development, for instance, might
simultaneously direct the maturation of set points for HPA axis
reactivity (Ellis et al., 2006).

Extensive studies of aggression in rats and mice suggest a causal
role for the hypothalamic-pituitary-gonadal (HPG) axis, serotonin
and vasopressin systems as biological substrates for individual dif-
ferences in aggressiveness. In contrast, variation in the HPA axis in
rats appears to be a consequence rather than a cause of behavioral
differentiation, potentially due to the related differentiation in car-
diovascular and metabolic demands (Koolhaas et al., 2010). Selec-
tion line studies in zebra finches (Taeniopygia guttata) (Martins
et al., 2007) and great tits (Baugh et al., 2012) support the idea of
correlated selection (in both directions) for exploration behavior
and HPA axis reactivity. It is therefore possible, though presently
untested, that the HPA axis-behavior relationship is bidirectional
in avian species. Examples of such bidirectionality in HPG axis-
behavior relationships have been demonstrated previously, includ-
ing the extensive body of research on the “challenge hypothesis”
(Wingfield et al., 1990) and a seminal study in ring doves (Streptop-
elia risoria), which showed that female vocal behavior is essential
for self-stimulation of the endocrine changes necessary to initiate
reproductive readiness (Cheng, 2003). Apparent bidirectionality
in the HPA axis-behavior correlation in great tits could arise as
the product of the indirect effects of one or more latent variables
(e.g., HPG axis; Schoech et al., 1999) inadvertently under selection
in selection line studies (van Oers et al., 2011) and underlying the
observed co-variation in our wild population.

5. Conclusions

Individual differences in behavior, although historically under-
studied (Bolnick et al., 2003) compared to individual differences
in morphology (Lande and Arnold, 1983), have received consider-
able attention in the past two decades. Our results, in combination
with previous work, support the idea that steroid hormones such
as glucocorticoids might exert pleiotropic actions, organizing dis-
tinct behaviors into suites (Koolhaas et al., 2010). In great tits, indi-
vidual differences in the slow-fast (shy-bold) continuum appear to
be linked to the reactivity of the glucocorticoid stress response. Fu-
ture studies should address (1) the generality of these findings in

other species; (2) how such co-variation in stress physiology and
behavior arises—e.g., the HPA axis could play a direct (activational)
or indirect (organizational) role in shaping behavioral differences;
and (3) what the potential fitness consequences of such (co)varia-
tion might be (Blas et al.,, 2007; MacDougall-Shackleton et al.,
2009; Romero and Wikelski, 2010).
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